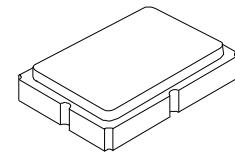


- Ideal for 418.0 MHz Transmitters
- Very Low Series Resistance
- Quartz Stability
- Surface-mount Ceramic Case
- Complies with Directive 2002/95/EC (RoHS)
- Tape and Reel Standard per ANSI/EIA-481
- Moisture Sensitivity Level: 1
- AEC-Q200 Qualified


The RO3103A is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount, ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 418 MHz.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation	+0	dBm
DC Voltage on any Non-ground Terminal	±30	VDC
Case Temperature	-40 to +125	°C
Soldering Temperature, 10 seconds / 5 cycles maximum	260	°C

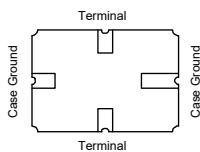
RO3103A

**418.0 MHz
SAW
Resonator**

SM5035-4

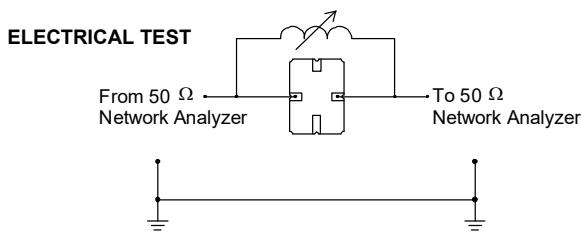
Electrical Characteristics

Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency, +25 °C	f_C	Δf_C	417.925		418.075	MHz
Tolerance from 418.00 MHz					±75	KHz
Insertion Loss	IL			1.5	2.0	dB
Quality Factor	Q_U	Q_L		12100		
50 Ω Loaded Q				1550		
Temperature Stability	T_O	f_C	10	25	40	°C
Turnover Frequency	f_O					
Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	$ f_A $			≤ 10		ppm/yr
DC Insulation Resistance between Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	R_M	L_M		15		Ω
	L_M			67.5		μH
	C_M			2.3		fF
	C_O			2.3		pF
Test Fixture Shunt Inductance	L_{TEST}			63		nH
Lid Symbolization (YY = Year, WW = Week, S = Shift)				659, YYWWs		

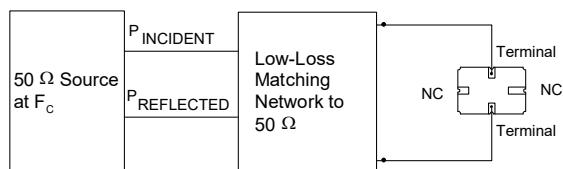

 CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

NOTES:

1. The design, manufacturing process, and specifications of this device are subject to change.
2. US or International patents may apply.
3. RoHS compliant from the first date of manufacture.

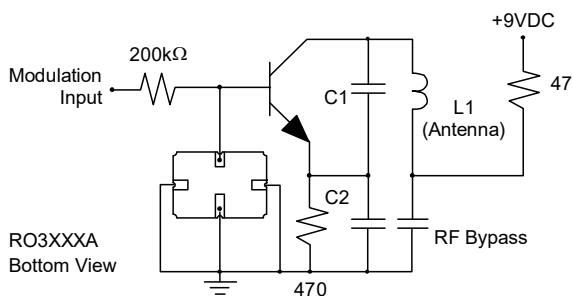

Electrical Connections

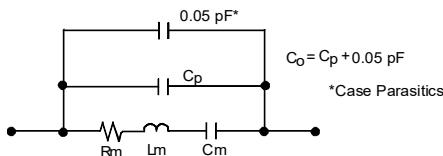
The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.



Typical Test Circuit

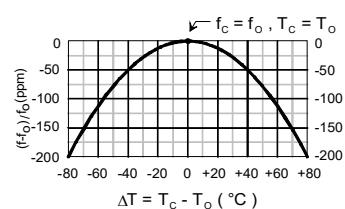
The test circuit inductor, L_{TEST} , is tuned to resonate with the static capacitance, C_0 , at f_C .


POWER TEST

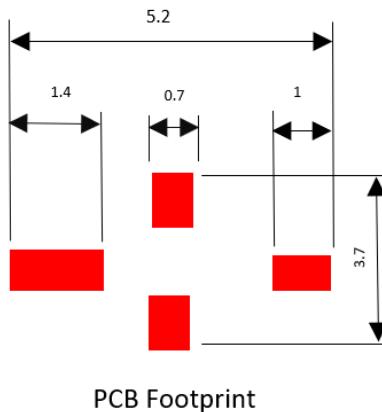
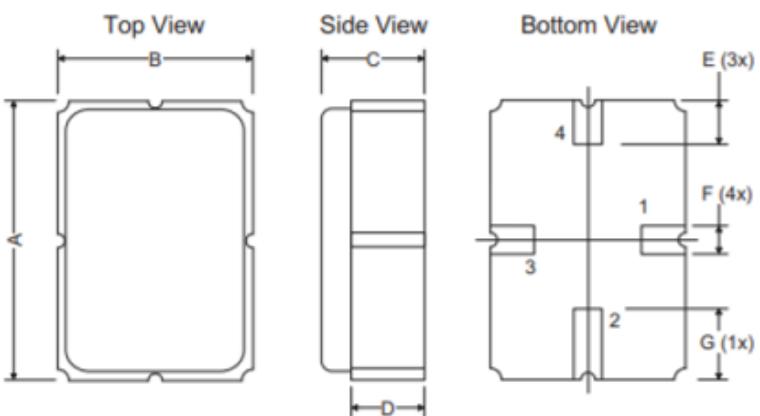

$$\text{CW RF Power Dissipation} = P_{\text{INCIDENT}} - P_{\text{REFLECTED}}$$

Typical Application Circuits

Typical Low-Power Transmitter Application

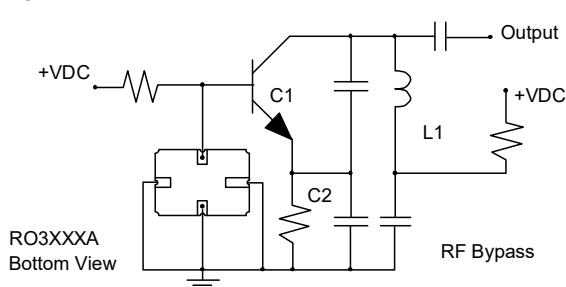


Equivalent Model

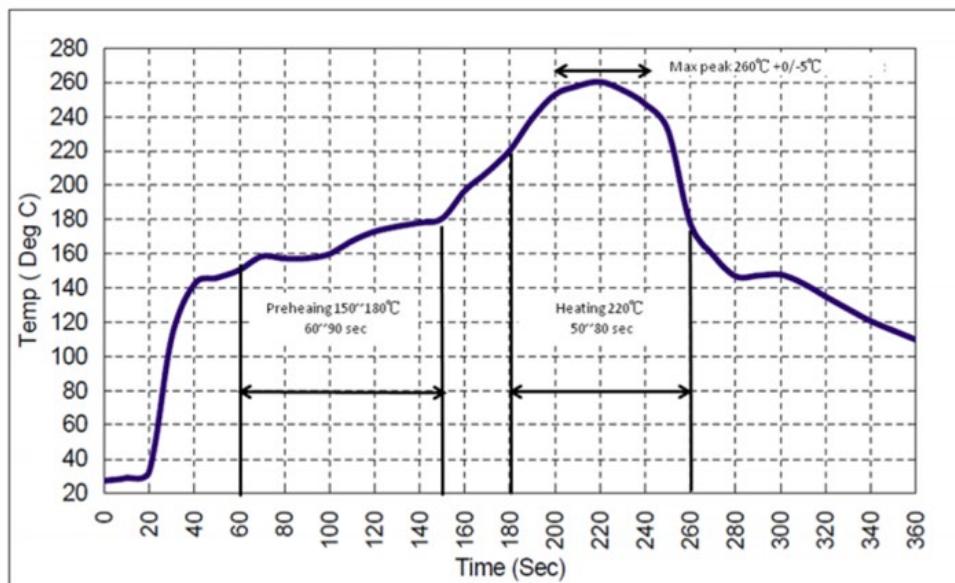
Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.



Case

PCB Footprint


Typical Local Oscillator Applications

Dimensions	Millimeters			Inches		
	Min	Nom	Max	Min	Nom	Max
A	4.87	5.00	5.13	0.191	0.196	0.201
B	3.37	3.50	3.63	0.132	0.137	0.142
C	1.45	1.53	1.60	0.057	0.060	0.062
D	1.35	1.43	1.50	0.040	0.057	0.059
E	0.67	0.80	0.93	0.026	0.031	0.036
F	0.37	0.50	0.63	0.014	0.019	0.024
G	1.07	1.20	1.33	0.042	0.047	0.052

Recommended Reflow Profile

1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
4. Time: 5 times maximum.

