

Ideal for 318 MHz Remote Control and Security Transmitters

- Very Low Series Resistance
- Quartz Stability
- Complies with Directive 2002/95/EC (RoHS)
- Tape and Reel Standard per ANSI/EIA-481

The RO3118E is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of transmitters and local oscillators operating at 318 MHz.

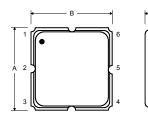
Absolute Maximum Ratings

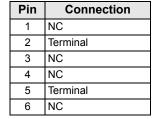
Rating	Value	Units
Input Power Level	0	dBm
DC Voltage	12	VDC
Storage Temperature Range	-40 to +125	°C
Operating Temperature Range	-40 to +105	°C
Soldering Temperature (10 seconds / 5 cycles maximum)	260	°C

318.0 MHz SAW Resonator

RO3118E

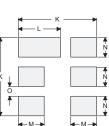
Electrical Characteristics

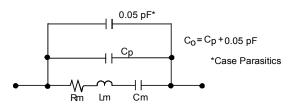

Characteristic			Notes	Minimum	Typical	Maximum	Units
Frequency, +25 °C	Absolute Frequency	f _C		317.925		318.075	MHz
	Tolerance from 318.0 MHz	Δf_{C}				±75	kHz
Insertion Loss		IL			1.6	2.2	dB
Quality Factor	Unloaded Q	Q _U			9000		
	50Ω Loaded Q	QL			1500		
Temperature Stability	Turnover Temperature	Т _О		10	25	40	°C
	Turnover Frequency	f _O			f _C		
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A			10		ppm/yr
DC Insulation Resistance between Any Two Terminals				1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			21		Ω
	Motional Inductance	L _M			93		μH
	Motional Capacitance	C _M			2.7		fF
	Shunt Static Capacitance	C _O			2.8		pF
Test Fixture Shunt Inductance		L _{TEST}			82		nH
Lid Symbolization: Y = Year, WW = Week, S = Shift)			687, <u>Y</u>	WWS		•	
Standard Reel Quantity	Reel Size 7 Inch			50	00 Pieces / Re	el	
	Reel Size 13 Inch	3000 Pieces / Reel					


CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

- 1. The design, manufacturing process, and specifications of this device are subject to change.
- 2. US or International patents may apply.
- 3. RoHS compliant from the first date of manufacture.

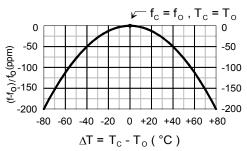
Electrical Connections


The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.

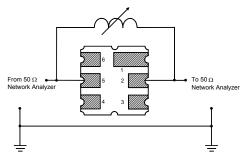


<u>н</u> р -

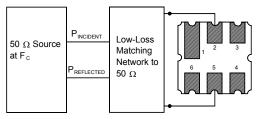
Case and Typical PCB Land Dimensions


Ref	mm			Inches			
	Min	Nom	Max	Min	Nom	Max	
Α	2.87	3.00	3.13	0.113	0.118	0.123	
В	2.87	3.00	3.13	0.113	0.118	0.123	
С	1.12	1.25	1.38	0.044	0.049	0.054	
D	0.77	0.90	1.03	0.030	0.035	0.040	
E	2.67	2.80	2.93	0.105	0.110	0.115	
F	1.47	1.60	1.73	0.058	0.063	0.068	
G	0.72	0.85	0.98	0.028	0.033	0.038	
н	1.37	1.50	1.63	0.054	0.059	0.064	
I	0.47	0.60	0.73	0.019	0.024	0.029	
J	1.17	1.30	1.43	0.046	0.051	0.056	
К		3.20			0.126		
L		1.70			0.067		
М		1.05			0.041		
Ν		0.81			0.032		
0		0.38			0.015		

Equivalent RLC Model

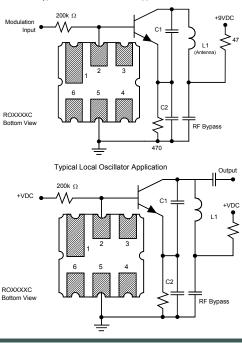

Temperature Characteristics

The curve shown accounts for resonator contribution only and does not include external LC component temperature effects.

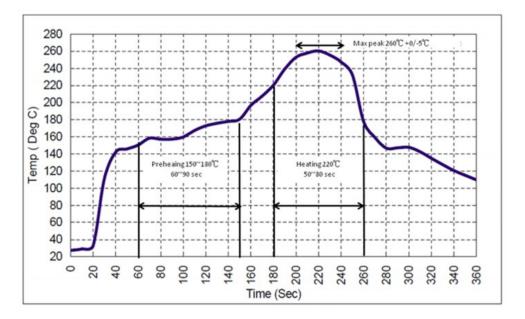


Characterization Test Circuit

Inductor L_{TEST} is tuned to resonate with the static capacitance, C_{O} , at F_{C} .



Power Dissipation Test


Example Application Circuits

Typical Low-Power Transmitter Application

Recommended Reflow Profile

- 1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
- 2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
- 3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
- 4. Time: 5 times maximum.

