

Designed for European 868.95 MHz SRD Transmitters

- Very Low Series Resistance
- Quartz Stability
- Complies with Directive 2002/95/EC (RoHS)
- Moisture Sensitivity Level: 1
- AEC-Q200 Qualified

The RO3156E is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 868.95 MHz. This SAW is designed specifically for SRD remote control and wireless security transmitters operating under ETSI EN 300 220.

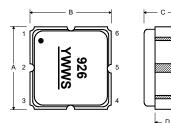
Absolute Maximum Ratings

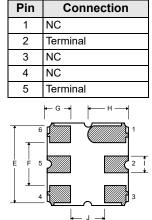
Rating	Value	Units
Input Power Level	0	dBm
DC Voltage	12	VDC
Storage Temperature	-40 to +125	°C
Operating Temperature Range	-40 to +125	°C
Soldering Temperature, 10 seconds / 5 cycles maximum	+260	°C

RO3156E-2

868.950 MHz SAW Resonator

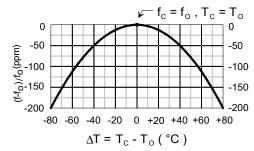
Electrical Characteristics

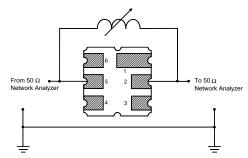

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Frequency, +25 °C		f _C		868.950		869.050	MHz
Tolerance from 868.95 MHz		Δf_{C}				±100	kHz
Insertion Loss		IL			1.2	2.0	dB
Quality Factor	Unloaded Q	QU			6700		
	50 Ω Loaded Q	QL			800		
Temperature Stability	Turnover Temperature	Т _О		10	25	40	°C
	Turnover Frequency	f _O			f _C		kHz
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	fA			<±10		ppm/yr
DC Insulation Resistance between Any Two Terminals				1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			14.1		Ω
	Motional Inductance	L _M			17.2		μH
	Motional Capacitance	CM			2.0		fF
	Shunt Static Capacitance	Co			2.3		pF
Test Fixture Shunt Inductance					14.6		nH
Lid Symbolization (Y = Year, WW = Week, S = Shift)		L _{TEST}	•		926, <u>YWW</u>	<u>S</u>	
Standard Reel QuantityReel Size 7 InchReel Size 13 Inch				5	00 Pieces / Re	eel	
				30	000 Pieces / R	eel	



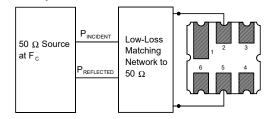
- 1. The design, manufacturing process, and specifications of this device are subject to change.
- 2. US or International patents may apply.
- 3. RoHS compliant from the first date of manufacture.

Electrical Connections

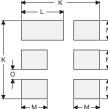

The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce


Temperature Characteristics

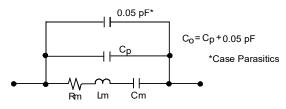
The curve shown accounts for resonator

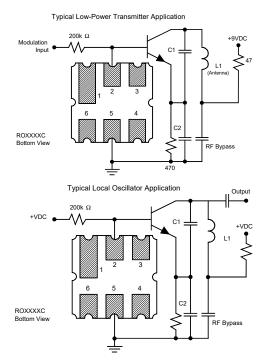


Characterization Test Circuit


Inductor L_{TEST} is tuned to resonate with the static capacitance, C_{O} , at F_{C} .

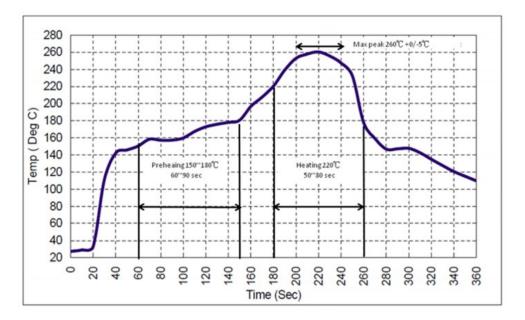
Power Dissipation Test




Case and Typical PCB Land Dimensions

Ref	mm			Inches			
	Min	Nom	Max	Min	Nom	Max	
Α	2.87	3.00	3.13	0.113	0.118	0.123	
В	2.87	3.00	3.13	0.113	0.118	0.123	
С	1.12	1.25	1.38	0.044	0.049	0.054	
D	0.77	0.90	1.03	0.030	0.035	0.040	
E	2.67	2.80	2.93	0.105	0.110	0.115	
F	1.47	1.60	1.73	0.058	0.063	0.068	
G	0.72	0.85	0.98	0.028	0.033	0.038	
н	1.37	1.50	1.63	0.054	0.059	0.064	
I	0.47	0.60	0.73	0.019	0.024	0.029	
J	1.17	1.30	1.43	0.046	0.051	0.056	
К		3.20			0.126		
L		1.70			0.067		
М		1.05			0.041		
Ν		0.81			0.032		
0		0.38			0.015		

Equivalent RLC Model


Example Application Circuits

©2010-2015 by RFM Integrated Device, Inc. RO3156E-2 (R) 06/24/2022

Recommended Reflow Profile

- 1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
- 2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
- 3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
- 4. Time: 5 times maximum.

